Russian Journal of Organic Chemistry, Vol. 39, No. 7, 2003, pp. 963–967. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 7, 2003, pp. 1024–1028. Original Russian Text Copyright © 2003 by Rubina, Fleisher, Abele, Popelis, Lukevits.

Prototropic Rearrangement of 2-Propynyl(methyl)amino, 2-Propynyloxy, and 2-Propynylsulfanyl Derivatives of Hetarenes under Conditions of Phase-Transfer Catalysis: Mechanism and Limitations

K. Rubina, M. Fleisher, E. Abele, Yu. Popelis, and E. Lukevits

Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia e-mail: kira@osi.lv

Received November 30, 2002

Abstract—2-Propynyl derivatives of *N*-methylaniline, phenol, benzenethiol, 2-pyridinethiol, 2-pyrimidinethiol, and 1,3-benzoxazole-2-thiol were synthesized. Under conditions of phase-transfer catalysis, phenyl 2-propynyl sulfide is converted into allenyl phenyl sulfide and phenyl 1-propynyl sulfide. The rearrangement mechanism was studied by the AM1 quantum-chemical method.

Rearrangement of 1-alkynes into 2-alkynes was usually effected in the systems KOH/EtOH [1, 2], KOEt/EtOH [3], t-BuOK/DMSO [4], and t-BuOK or EtONa/Me₂SO₄ [5]. As a rule, the triple bond migration process is reversible. For example, 2-alkynes are readily converted into 1-alkynes in the presence of *t*-BuLi [6] or BuLi/Et₂O [7]. However, both reactions require a polar solvent or organolithium base to be used. Ogawa et al. [8] described rearrangement of 2-propynyl sulfides into the corresponding allenes by the action of potassium bis(trimethylsilyl)amide. Most recently, Florio et al. [9] reported on the Wittig rearrangement of 2-propynyl ethers in the presence of butyllithium in THF. Kobychev et al. [10] performed a quantum-chemical study of noncatalytic acetyleneallene rearrangement of the $XCH_2C \equiv CH$ systems where X = H, Me, NMe₂, OMe, F, SMe.

The goal of our present study was to synthesize 2-propynyl and allenyl derivatives of aromatic and heteroaromatic thiols, alcohols, and amines under conditions of phase-transfer catalysis. The mechanism of the rearrangement of phenyl 2-propynyl sulfide into allenyl phenyl sulfide and phenyl 1-propynyl sulfide, which occurs during the phase-transfer reaction, was studied by the AM1 quantum-chemical method. 2-Propynyl(methyl)amino-, 2-propynyloxy-, and 2-propynylsulfanyl-substituted hetarenes were successfully synthesized in a two-phase system liquid– solid (Scheme 1, Table 1).

The alkylation of benzenethiol (I) with 2-propynyl bromide in the system solid K_2CO_3 -18-crown-6benzene at room temperature afforded a mixture of phenyl 2-propynyl sulfide (VII, yield 86%) and phenyl 1-propynyl sulfide (IX, yield 5%). By the reaction of benzenethiol with 2-propynyl bromide in the system KOH-18-crown-6-benzene at room temperature (reaction time 1 h) we obtained terminal acetylene VII in 52% yield. Phenyl 2-propynyl sulfide (VII) reacted with solid KOH under conditions of phase-transfer catalysis, yielding 60% of allene VIII and 40% of phenyl 1-propynyl sulfide (IX). Phenol (II) failed to react with BrCH₂C≡CH in the system

Scheme	1.

	$BrCH_2C \equiv CH$						
	base, 18-crown-6						
	PhH, 20°C						
ArXH	>	$ArXCH_2C \equiv CH$	>	$ArXCH=C=CH_2$	~ ``	ArXC≡C−CH	\mathbb{H}_3
I - VI		VII, X–XIV		VIII		1X	

I–III, VII–XI, Ar = phenyl; IV, XII, Ar = 2-pyridyl; V, XIII, Ar = 2-pyrimidyl; VI, XIV, Ar = 2-benzoxazolyl; I, IV–IX, XII–XIV, X = S; II, X, X = O; III, XI, X = NCH₃.

Initial comp. no.	Ar	X	Base	Reaction time, h	Product ^a (yield, %)	Mass spectrum, <i>m/z</i> (<i>I</i> _{rel} , %)
Ι	Ph	S	K_2CO_3 (2 equiv)	3.5	VII (86) IX (5)	148 $(M^+, 36)$ 148 $(M^+, 100)$
Ι	Ph	S	KOH (2 equiv)	1	VII (52)	148 (<i>M</i> ⁺ , 36)
Ι	Ph	S	KOH (2 equiv)	24	VIII (60)	146 (<i>M</i> ⁺ , 27)
					IX (40)	148 $(M^+, 100)$
Π	Ph	0	K_2CO_3 (2 equiv)	24	X	132 (<i>M</i> ⁺ , 36)
Π	Ph	0	KOH (2 equiv)	7 ^b	X (44)	132 (<i>M</i> ⁺ , 36)
III	Ph	Ν	K_2CO_3 (2 equiv)	16	XI (98)	145 $(M^+, 65)$
III	Ph	Ν	KOH (2 equiv)	10	XI ^c	145 $(M^+, 65)$
IV	2-Pyridyl	S	KOH (2 equiv)	0.25	XII (95)	149 (M^+ , 57)
\mathbf{V}	2-Pyrimidyl	S	KOH (2 equiv)	0.3	XIII (100)	150 (<i>M</i> ⁺ , 98)
VI	2-Benzoxazolyl	S	KOH (2 equiv)	0.5	XIV (86)	189 (<i>M</i> ⁺ , 88)

Table 1. Synthesis and mass spectra of alkynes VII-XIV

^a Compounds VII, VIII [5], X, and XI [11] have already been reported.

^b The reaction was initially accompanied by heat evolution; the mixture was then stirred for 5.5 h at room temperature and was heated for 1 h at 50°C.

^c The product was not isolated.

Table 2. ¹H NMR spectra of compounds VII-XIV in CDCl₃, δ , ppm (*J*, Hz) (relative to HMDS)

Comp. no.	Ar	XR	CH ₃	≡CH	XCH ₂	=CH ₂	XCH=	Ar
VII	Ph	SCH ₂ C≡CH	_	2.22 t	3.59 d	_	_	7.2–7.5 m
VIII	Ph	$SCH=C=CH_2$	_	(<i>J</i> = 2.5)	(<i>J</i> = 2.5)	4.97 d $(I = 6.2)$	5.94 t $(I - 6.2)$	7.35 m
IX	Ph	$SC = CCH_3$	2.08 s	_	-	(5 = 0.2)	(5 = 0.2)	7.34 m
Х	Ph	OCH ₂ C≡CH	_	2.50 t	4.67 d	_	_	6.98 m,
XI	Ph	$N(CH_2C \equiv CH)CH_3$	2.95 s	(J = 2.1) 2.15 t	(J = 2.1) 4.03 d	_	_	6.82 m,
XII	2-Pyridyl	SCH ₂ C≡CH	_	(J = 2.3) 2.18 t	(J = 2.3) 3.95 d	_	_	7.26 m 7.00 m,
				(J = 2.6)	(<i>J</i> = 2.6)			7.18 m, 7.50 m,
XIII	2-Pyrimidyl	$SCH_2C \equiv CH$	_	2.18 t	4.00 d	_	_	8.44 m 6.98 m,
				(<i>J</i> = 2.6)	(J = 2.6)			8.51 m
XIV	2-Benzoxazolyl	$SCH_2C \equiv CH$	_	$2.30 ext{ t}$ (J = 2.8)	4.07 d (J = 2.8)	_	_	7.26 m, 7.45 m,
								7.62 m

solid K₂CO₃–18-crown-6–benzene. Phenyl 2-propynyl ether (**X**) was synthesized in 44% yield in the system BrCH₂C≡CH–solid KOH–18-crown-6–benzene. The reaction of *N*-methylaniline (**III**) with 2-propynyl bromide in the system K₂CO₃(or KOH)–18-crown-6–benzene gave 98% of *N*-methyl-*N*-(2-propynyl)aniline (**XI**) as the only product. 2-Propynyl hetaryl sulfides

XII–**XIV** were readily obtained in 86–100% yield from the corresponding thiols by treatment with $BrCH_2C\equiv CH$ in the system KOH–18-crown-6-benzene at room temperature (reaction time 15–30 min). Prolonged reaction of alkynes **XII–XIV** with KOH leads to tarring of the mixture. Spectral parameters of compounds **VII–XIV** are given in Tables 1–3.

Comp. no.	Ar	XR	C≡C	XCH ₂	Ar ^a
VII	Ph	SCH ₂ C≡CH	71.51 (≡CH), 79.82 (CH ₂ C≡)	22.55	126.95 (C^p) 128.97 (C^m) 130.06 (C^o) 124.05 (C^i)
VIII	Ph	SCH=C=CH ₂	_	78.74 (=CH ₂) 85.89 (XCH=)	134.93 (C) $126.45 (Cp)$ $128.30 (Co)$ $128.93 (Cm)$ $135.61 (Ci)$ $209.35 (=C=)b$
IX	Ph	SC≡CCH ₃	5.19 (≡CCH ₃), 63.86 (≡CCH ₃), 95.25 (XC≡)	_	$\begin{array}{c} 209.33 & (\ \ C \ \) \\ 125.88 & (C^{o}) \\ 126.11 & (C^{p}) \\ 129.04 & (C^{m}) \\ 133.60 & (C^{i}) \end{array}$
X	Ph	OCH ₂ C≡CH	75.41 (\equiv CH), 78.61 (CH ₂ C \equiv)	55.69	114.87 (C^{o}) 121.54 (C^{p}) 129.45 (C^{m}) 157.51 (C^{i})
XI	Ph	N(CH ₂ C≡CH)CH ₃	38.54 (≡CCH ₃), 71.96 (≡CH), 79.28 (CH ₂ C≡)	42.44	114.25 (C^{o}) 118.30 (C^{p}) 129.08 (C^{m}) 148.99 (C^{i})
XII	2-Pyridyl	SCH ₂ C≡CH	70.42 (≡CH), 80.06 (≡C)	18.16	119.85 (C^5), 122.00 (C^3), 136.09 (C^4), 149.52 (C^6), 157.05 (C^2)
XIII	2-Pyrimidyl	SCH ₂ C≡CH	70.38 (≡CH), 79.49 (≡C)	19.15	116.77 (C^5), 157.28 (C^4 , C^6), 170 (C^2)
XIV	2-Benzoxazolyl	SCH ₂ C≡CH	72.38 (≡CH), 77.86 (≡C)	20.66	109.99 (C^{6}), 118.67 (C^{5}), 124.15 (C^{7}), 124.40 (C^{4}), 141.74 (C^{7a}), 152.00 (C^{3a}), 162.99 (C^{2})

Table 3. ^{13}C NMR spectra of compounds VII–XIV in CDCl3, $\delta_{\text{C}},$ ppm

^a The ring carbon signals were assigned according to [12].

^b The ring carbon signals were assigned according to [13].

The isomerization of phenyl 2-propynyl sulfide into phenyl 1-propynyl sulfide under conditions of phase-transfer catalysis was examined by the AM1 semiempirical quantum-chemical method [14, 15]. The mechanism of the process is shown in Scheme 2. 18-Crown-6 as phase-transfer catalyst ensures transfer of K^+ OH⁻ into the organic phase. According to the results of our calculations, the first reaction stage, deprotonation of PhSH, requires no activation energy. The heat of formation of PhS⁻ and water is equal to -82.4 kcal/mol. The complex $[\text{H}_2\text{O}\cdots\text{K}]^+$ reacts with 2-propynyl bromide to afford the carbocation $[\text{H}-\text{Br}\cdots\text{CH}_2-\text{C}\equiv\text{CH}]^+$ ($\Delta H = -69.1 \text{ kcal/mol}$). Phenyl 2-propynyl sulfide (**VII**) is formed by reaction of PhS⁻ ion with $\text{H}-\text{Br}\cdots\text{CH}_2-\text{C}\equiv\text{CH}]^+$ ($\Delta H = -181.1 \text{ kcal/mol}$). Deprotonation of alkyne **VII** yields [PhSCHC \equiv CH]⁻ ($\Delta H = -71.5 \text{ kcal/mol}$) (see figure, *b*). In the initial state, the distance between the oxygen

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 7 2003

atom of the hydroxy group and hydrogen atom on C^3 is 3.5 Å (see figure, *a*). This process is energetically more favorable than abstraction of the terminal proton from the acetylenic moiety ($\Delta H = -40.9 \text{ kcal/mol}$). The subsequent proton transfer from the complex $[H_2O\cdots K]^+$ to the terminal carbon atom (C^1 , see figure, *c*; the distance bentween the C^1 atom and the corresponding proton in the complex is 2.76 Å) is characterized by a ΔH value of -249.2 kcal/mol, and it leads to formation of allenyl phenyl sulfide (**VIII**) (see figure, *d*). Allene **VIII** then reacts with OH⁻, yielding [PhSC=C=CH₂]⁻ ($\Delta H = -74.4 \text{ kcal/mol}$). Proton transfer to the terminal carbon atom C^1 gives

Table 4. Calculated charges on the X and C^1-C^3 atoms in 2-propynyl derivatives of benzenethiol, phenol, and *N*-methylaniline (compounds **VII**, **X**, and **XI**)

phenyl 1-propynyl sulfide (**IX**) ($\Delta H = -253.6 \text{ kcal} \times \text{mol}^{-1}$). A similar reaction heat (-242.9 kcal/mol) is typical of protonation of the C³ atom in the carbanion [PhSC=C=CH₂]⁻, which leads to allene **VIII**. The rearrangement of phenyl 2-propynyl sulfide (**VII**) gave a mixture of allenyl phenyl sulfide (**VIII**, 60%) and phenyl 1-propynyl sulfide (**IX**, 40%).

The above rearrangement does not occur with phenyl 2-propynyl ether (**X**) and *N*-methyl-*N*-(2-propynyl)aniline (**XI**). This may be explained in terms of different electronegativities of the nitrogen, oxygen, and sulfur atoms. Table 4 contains the calculated charges on the N, O, S, and C^3 atoms in compounds **VII**, **X**, and **XI**.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Varian 200 Mercury spectrometer (200 and 50 MHz, respectively) using $CDCl_3$ as solvent and hexamethyldisiloxane as internal reference. The mass spectra (70 eV) were run on an HP 6890 GC–MS system. GLC analysis was performed on a Chrom-5 chromatograph equipped with a flame-ionization detector (glass column, 1.2 m×3 mm, packed with 5% of OV-101 on Chromosorb W-HP, 80–100 mesh; carrier gas nitrogen, flow rate 60 ml/min; oven temperature was varied from 180 to 250°C, depending on the composition of the reaction mixture). Thiols, phenol, and 18-crown-6 were commercial reagents (from Acros) and were used without additional purification.

AM1 simulation of the rearrangement of phenyl 2-propynyl sulfide into allenyl phenyl sulfide; the distances are given in Å; for better clearness, the potassium-oxygen distance in the structures of KOH and $[H_2O\cdots K]^+$ is elongated relative to the calculated value.

2-Propynyl bromide and *N*-methylaniline were distilled prior to use.

Reaction of thiols, phenol, and N-methylaniline with 2-propynyl bromide. 2-Propynyl bromide, 1.33 ml (15 mmol), was added to a suspension of 10 mmol of substrate I–VI, 0.264 g (1 mmol) of 18-crown-6, and 20 mmol of powdered K_2CO_3 or KOH in 20 ml of toluene. The mixture was stirred for 0.25–24 h at room temperature, filtered through a layer of silica gel, and evaporated to isolate compounds VII–IX and XI. Product X was purified by vacuum distillation, bp 84–86°C (10 mm). Compounds XII–XIV were purified by column chromatography using toluene–hexane mixtures (at various ratios) as eluent. The reaction conditions and spectral parameters of alkynes VII–XIV are collected in Tables 1–3.

Quantum-chemical calculations. Semiempirical quantum-chemical calculations were performed with the use of MOPAC 6 software (AM1 Hamiltonian) [11, 12]. The equilibrium geometric parameters were determined by full optimization using PRECISE keyword. Insofar as MOPAC 6 lacks parametrization for potassium atom, a "sparkle" pseudospecies was used instead. Supporting information (Cartesian coordinates of all initial and optimized structures) is available from the author (Dr. chem. M. Fleisher <misha@osi.lv>).

REFERENCES

- 1. Jacobs, T.L., Org. React., 1949, vol. 5, p. 13.
- 2. Jacobs, T.L., Akawie, R., and Cooper, R.G., J. Am. Chem. Soc., 1951, vol. 73, p. 1273.

- 3. Wojtkowiak, B. and Romanet, R., Bull. Soc. Chim. Fr., 1962, p. 805.
- 4. De Medeiros, E.F., Herbert, J.M., and Taylor, R.J.K., *Tetrahedron Lett.*, 1990, vol. 31, p. 5843.
- Filippova, A.Kh., Frolov, Yu.L., Lyashenko, G.S., Modonov, V.B., Ivanova, N.A., Kalikhman, I.D., Voronkov, M.G., and Vyazankin, N.S., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1986, p. 1847.
- Magee, T.V., Stork G., and Fludzinski, P., *Tetrahedron Lett.*, 1995, vol. 36, p. 7607.
- Klein, J. and Becker, J.Y., *Tetrahedron*, 1972, vol. 28, p. 5385.
- Ogawa, A., Sakagami, K., Shima, A., Suzuki, H., Komiya, S., Katano, Y., and Mitsunobu, O., *Tetrahedron Lett.*, 2002, vol. 43, p. 6387.
- 9. Florio, S., Granito, C., Ingrosso, G., and Troisi, L., *Eur. J. Org. Chem.*, 2002, vol. 20, p. 3465.
- 10. Kobychev, V.B., Vitkovskaya, N.M., Klyba, N.S., and Trofimov, B.A., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2002, p. 713.
- 11. Ficini, J. and Barbara, C., Bull. Soc. Chim. Fr., 1965, p. 2787.
- 12. Ewing, D.F., Org. Magn. Reson., 1979, vol. 12, p. 499.
- Kalinowski, H.-O., Berger, S., and Braun, S., *13C-NMR Spektroskopie*, Stuttgart: Georg Thieme, 1984, p. 133.
- 14. Stewart, J.J.P., MOPAC, version 6.0. Quantum Chemical Program Exchange (QCPE), Program Number 455, Bloomington, IN, 1984.
- 15. Stewart, J.J.P., MOPAC, version 6.0. Manual. Program Number 455, Bloomington, IN, 1984.