Prototropic Rearrangement of 2-Propynyl(methyl)amino, 2-Propynyloxy, and 2-Propynylsulfanyl Derivatives of Hetarenes under Conditions of Phase-Transfer Catalysis: Mechanism and Limitations

K. Rubina, M. Fleisher, E. Abele, Yu. Popelis, and E. Lukevits
Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
e-mail: kira@osi.lv

Received November 30, 2002

Abstract

Propynyl derivatives of N-methylaniline, phenol, benzenethiol, 2-pyridinethiol, 2-pyrimidinethiol, and 1,3-benzoxazole-2-thiol were synthesized. Under conditions of phase-transfer catalysis, phenyl 2-propynyl sulfide is converted into allenyl phenyl sulfide and phenyl 1-propynyl sulfide. The rearrangement mechanism was studied by the AM1 quantum-chemical method.

Rearrangement of 1-alkynes into 2-alkynes was usually effected in the systems $\mathrm{KOH} / \mathrm{EtOH}[1,2]$, $\mathrm{KOEt} / \mathrm{EtOH}$ [3], t-BuOK/DMSO [4], and t-BuOK or $\mathrm{EtONa} / \mathrm{Me}_{2} \mathrm{SO}_{4}$ [5]. As a rule, the triple bond migration process is reversible. For example, 2 -alkynes are readily converted into 1 -alkynes in the presence of t-BuLi [6] or $\mathrm{BuLi} / \mathrm{Et}_{2} \mathrm{O}$ [7]. However, both reactions require a polar solvent or organolithium base to be used. Ogawa et al. [8] described rearrangement of 2 -propynyl sulfides into the corresponding allenes by the action of potassium bis(trimethylsilyl)amide. Most recently, Florio et al. [9] reported on the Wittig rearrangement of 2-propynyl ethers in the presence of butyllithium in THF. Kobychev et al. [10] performed a quantum-chemical study of noncatalytic acetyleneallene rearrangement of the $\mathrm{XCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ systems where $\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{NMe}_{2}, \mathrm{OMe}, \mathrm{F}, \mathrm{SMe}$.

The goal of our present study was to synthesize 2-propynyl and allenyl derivatives of aromatic and heteroaromatic thiols, alcohols, and amines under conditions of phase-transfer catalysis. The mechanism
of the rearrangement of phenyl 2-propynyl sulfide into allenyl phenyl sulfide and phenyl 1-propynyl sulfide, which occurs during the phase-transfer reaction, was studied by the AM1 quantum-chemical method. 2-Propynyl(methyl)amino-, 2-propynyloxy-, and 2-propynylsulfanyl-substituted hetarenes were successfully synthesized in a two-phase system liquidsolid (Scheme 1, Table 1).

The alkylation of benzenethiol (I) with 2-propynyl bromide in the system solid $\mathrm{K}_{2} \mathrm{CO}_{3}$-18-crown-6benzene at room temperature afforded a mixture of phenyl 2-propynyl sulfide (VII, yield 86%) and phenyl 1-propynyl sulfide (IX, yield 5\%). By the reaction of benzenethiol with 2-propynyl bromide in the system $\mathrm{KOH}-18$-crown-6-benzene at room temperature (reaction time 1 h) we obtained terminal acetylene VII in 52% yield. Phenyl 2-propynyl sulfide (VII) reacted with solid KOH under conditions of phase-transfer catalysis, yielding 60% of allene VIII and 40% of phenyl 1-propynyl sulfide (IX). Phenol (II) failed to react with $\mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ in the system

Scheme 1.

I-III, VII-XI, Ar $=$ phenyl; IV, XII, Ar $=2$-pyridyl; V, XIII, Ar $=2$-pyrimidyl; VI, XIV, Ar $=2$-benzoxazolyl; I, IV-IX, XII-XIV, $X=S ; \mathbf{I I}, \mathbf{X}, X=\mathrm{O}$; III, XI, $\mathrm{X}=\mathrm{NCH}_{3}$.

Table 1. Synthesis and mass spectra of alkynes VII-XIV

Initial comp. no.	Ar	X	Base	Reaction time, h	Product ${ }^{\text {a }}$ (yield, \%)	Mass spectrum, $\mathrm{m} / \mathrm{z}\left(I_{\text {rel }}, \%\right)$
I	Ph	S	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv)	3.5	$\begin{aligned} & \text { VII (86) } \\ & \text { IX } \end{aligned}$	$\begin{array}{ll} 148 & \left(M^{+},\right. \\ 148 & 36) \\ \left(M^{+},\right. & 100) \end{array}$
I	Ph	S	KOH (2 equiv)	1	VII (52)	148 ($\left.M^{+}, 36\right)$
I	Ph	S	KOH (2 equiv)	24	VIII (60)	146 ($\left.M^{+}, 27\right)$
					IX (40)	$148\left(M^{+}, 100\right)$
II	Ph	O	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv)	24	X	$132\left(M^{+}, 36\right)$
II	Ph	O	KOH (2 equiv)	$7{ }^{\text {b }}$	X (44)	132 ($\left.M^{+}, 36\right)$
III	Ph	N	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv)	16	XI (98)	145 ($\left.M^{+}, 65\right)$
III	Ph	N	KOH (2 equiv)	10	XI' ${ }^{\text {c }}$	145 ($\left.M^{+}, 65\right)$
IV	2-Pyridyl	S	KOH (2 equiv)	0.25	XII (95)	149 ($\left.M^{+}, 57\right)$
V	2-Pyrimidyl	S	KOH (2 equiv)	0.3	XIII (100)	150 ($\left.M^{+}, 98\right)$
VI	2-Benzoxazolyl	S	KOH (2 equiv)	0.5	XIV (86)	$189\left(M^{+}, 88\right)$

${ }^{\text {a }}$ Compounds VII, VIII [5], X, and XI [11] have already been reported.
${ }^{\text {b }}$ The reaction was initially accompanied by heat evolution; the mixture was then stirred for 5.5 h at room temperature and was heated for 1 h at $50^{\circ} \mathrm{C}$.
${ }^{c}$ The product was not isolated.
Table 2. ${ }^{1} \mathrm{H}$ NMR spectra of compounds VII-XIV in $\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}(J, \mathrm{~Hz})$ (relative to HMDS)

Comp. no.	Ar	XR	CH_{3}	$\equiv \mathrm{CH}$	XCH_{2}	$=\mathrm{CH}_{2}$	$\mathrm{XCH}=$	Ar
VII	Ph	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	-	$\begin{gathered} 2.22 \mathrm{t} \\ (J=2.5) \end{gathered}$	$\begin{gathered} 3.59 \mathrm{~d} \\ (J=2.5) \end{gathered}$	-	-	$7.2-7.5 \mathrm{~m}$
VIII	Ph	$\mathrm{SCH}=\mathrm{C}=\mathrm{CH}_{2}$	-	-	-	$\begin{gathered} 4.97 \mathrm{~d} \\ (J=6.2) \end{gathered}$	$\begin{gathered} 5.94 \mathrm{t} \\ (J=6.2) \end{gathered}$	7.35 m
IX	Ph	$\mathrm{SC} \equiv \mathrm{CCH}_{3}$	2.08 s	-	-	-	-	7.34 m
X	Ph	$\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	-	$\begin{gathered} 2.50 \mathrm{t} \\ (J=2.1) \end{gathered}$	$\begin{gathered} 4.67 \mathrm{~d} \\ (J=2.1) \end{gathered}$	-	-	$\begin{aligned} & 6.98 \mathrm{~m}, \\ & 7.29 \mathrm{~m} \end{aligned}$
XI	Ph	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right) \mathrm{CH}_{3}$	2.95 s	$\begin{gathered} 2.15 \mathrm{t} \\ (J=2.3) \end{gathered}$	$\begin{gathered} 4.03 \mathrm{~d} \\ (J=2.3) \end{gathered}$	-	-	$\begin{aligned} & 6.82 \mathrm{~m}, \\ & 7.26 \mathrm{~m} \end{aligned}$
XII	2-Pyridyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	-	$\begin{gathered} 2.18 \mathrm{t} \\ (J=2.6) \end{gathered}$	$\begin{gathered} 3.95 \mathrm{~d} \\ (J=2.6) \end{gathered}$	-	-	$\begin{aligned} & 7.00 \mathrm{~m}, \\ & 7.18 \mathrm{~m}, \\ & 7.50 \mathrm{~m}, \\ & 8.44 \mathrm{~m} \end{aligned}$
XIII	2-Pyrimidyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	-	$\begin{gathered} 2.18 \mathrm{t} \\ (J=2.6) \end{gathered}$	$\begin{gathered} 4.00 \mathrm{~d} \\ (J=2.6) \end{gathered}$	-	-	$\begin{aligned} & 6.98 \mathrm{~m}, \\ & 8.51 \mathrm{~m} \end{aligned}$
XIV	2-Benzoxazolyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	-	$\begin{gathered} 2.30 \mathrm{t} \\ (J=2.8) \end{gathered}$	$\begin{aligned} & 4.07 \mathrm{~d} \\ & (J=2.8) \end{aligned}$	-	-	$\begin{aligned} & 7.26 \mathrm{~m}, \\ & 7.45 \mathrm{~m}, \\ & 7.62 \mathrm{~m} \end{aligned}$

solid $\mathrm{K}_{2} \mathrm{CO}_{3}$-18-crown-6-benzene. Phenyl 2-propynyl ether (\mathbf{X}) was synthesized in 44% yield in the system $\mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH}$-solid $\mathrm{KOH}-18$-crown-6-benzene. The reaction of N -methylaniline (III) with 2-propynyl bromide in the system $\mathrm{K}_{2} \mathrm{CO}_{3}$ (or KOH)-18-crown-6benzene gave 98% of N-methyl- N-(2-propynyl)aniline (XI) as the only product. 2-Propynyl hetaryl sulfides

XII-XIV were readily obtained in 86-100\% yield from the corresponding thiols by treatment with $\mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ in the system $\mathrm{KOH}-18$-crown-6-benzene at room temperature (reaction time $15-30 \mathrm{~min}$). Prolonged reaction of alkynes XII-XIV with KOH leads to tarring of the mixture. Spectral parameters of compounds VII-XIV are given in Tables 1-3.

Table 3．${ }^{13} \mathrm{C}$ NMR spectra of compounds VII－XIV in $\mathrm{CDCl} 3, \delta_{\mathrm{C}}$ ，ppm

Comp．no．	Ar	XR	$\mathrm{C} \equiv \mathrm{C}$	XCH_{2}	$\mathrm{Ar}^{\text {a }}$
VII	Ph	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\begin{aligned} & 71.51 \quad(\equiv \mathrm{CH}), \\ & 79.82 \quad\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right) \end{aligned}$	22.55	$\begin{array}{ll} 126.95 & \left(\mathrm{C}^{p}\right) \\ 128.97 & \left(\mathrm{C}^{m}\right) \\ 130.06 & \left(\mathrm{C}^{o}\right) \\ 134.95 & \left(\mathrm{C}^{i}\right) \end{array}$
VIII	Ph	$\mathrm{SCH}=\mathrm{C}=\mathrm{CH}_{2}$	－	$\begin{array}{ll} 78.74 & \left(=\mathrm{CH}_{2}\right) \\ 85.89 & (\mathrm{XCH}=) \end{array}$	$\begin{array}{ll} 126.45 & \left(\mathrm{C}^{p}\right) \\ 128.30 & \left(\mathrm{C}^{o}\right) \\ 128.93 & \left(\mathrm{C}^{m}\right) \\ 135.61 & \left(\mathrm{C}^{i}\right) \\ 209.35 & (=\mathrm{C}=)^{\mathrm{b}} \end{array}$
IX	Ph	$\mathrm{SC} \equiv \mathrm{CCH}_{3}$	$\begin{aligned} & 5.19\left(\equiv \mathrm{CCH}_{3}\right), \\ & 63.86\left(\equiv \mathrm{CCH}_{3}\right), \\ & 95.25(\mathrm{XC} \equiv) \end{aligned}$	－	$\begin{array}{ll} 125.88 & \left(\mathrm{C}^{o}\right) \\ 126.11 & \left(\mathrm{C}^{p}\right) \\ 129.04 & \left(\mathrm{C}^{m}\right) \\ 133.60 & \left(\mathrm{C}^{i}\right) \end{array}$
X	Ph	$\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\begin{array}{ll} 75.41 & (\equiv \mathrm{CH}), \\ 78.61 & \left(\mathrm{CH}_{2} \mathrm{C} \equiv\right) \end{array}$	55.69	$\begin{array}{ll} 114.87 & \left(\mathrm{C}^{o}\right) \\ 121.54 & \left(\mathrm{C}^{p}\right) \\ 129.45 & \left(\mathrm{C}^{m}\right) \\ 157.51 \quad\left(\mathrm{C}^{i}\right) \end{array}$
XI	Ph	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right) \mathrm{CH}_{3}$	$\begin{aligned} & 38.54\left(\equiv \mathrm{CCH}_{3}\right), \\ & 71.96 \quad(\equiv \mathrm{CH}), \\ & 79.28 \quad\left(\mathrm{CH}_{2} \mathrm{C} \equiv\right) \end{aligned}$	42.44	$\begin{array}{ll} 114.25 & \left(\mathrm{C}^{o}\right) \\ 118.30 & \left(\mathrm{C}^{p}\right) \\ 129.08 & \left(\mathrm{C}^{m}\right) \\ 148.99 & \left(\mathrm{C}^{i}\right) \end{array}$
XII	2－Pyridyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\begin{aligned} & 70.42 \text { (三СН), } \\ & 80.06 \text { (三С) } \end{aligned}$	18.16	$\begin{aligned} & 119.85\left(\mathrm{C}^{5}\right), \\ & 122.00\left(\mathrm{C}^{3}\right), \\ & 136.09\left(\mathrm{C}^{4}\right), \\ & 149.52\left(\mathrm{C}^{6}\right), \\ & 157.05\left(\mathrm{C}^{2}\right) \end{aligned}$
XIII	2－Pyrimidyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\begin{aligned} & 70.38 \text { (三CH), } \\ & 79.49 \text { (三С) } \end{aligned}$	19.15	$\begin{aligned} & 116.77\left(C^{5}\right), \\ & 157.28\left(C^{4}, C^{6}\right), \\ & 170\left(C^{2}\right) \end{aligned}$
XIV	2－Benzoxazolyl	$\mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\begin{aligned} & 72.38 \text { (三СН), } \\ & 77.86 \text { (三С) } \end{aligned}$	20.66	$\begin{aligned} & 109.99\left(\mathrm{C}^{6}\right), \\ & 118.67\left(\mathrm{C}^{5}\right), \\ & 124.15\left(\mathrm{C}^{7}\right), \\ & 124.40\left(\mathrm{C}^{4}\right), \\ & 141.74\left(\mathrm{C}^{7 \mathrm{a}}\right), \\ & 152.00\left(\mathrm{C}^{3 \mathrm{a}}\right), \\ & 162.99\left(\mathrm{C}^{2}\right) \end{aligned}$

${ }^{\text {a }}$ The ring carbon signals were assigned according to［12］．
${ }^{\mathrm{b}}$ The ring carbon signals were assigned according to［13］．

The isomerization of phenyl 2－propynyl sulfide into phenyl 1－propynyl sulfide under conditions of phase－transfer catalysis was examined by the AM1 semiempirical quantum－chemical method［14，15］． The mechanism of the process is shown in Scheme 2. 18－Crown－6 as phase－transfer catalyst ensures transfer of $\mathrm{K}^{+} \mathrm{OH}^{-}$into the organic phase．According to the results of our calculations，the first reaction stage， deprotonation of PhSH ，requires no activation energy．

The heat of formation of PhS^{-}and water is equal to $-82.4 \mathrm{kcal} / \mathrm{mol}$ ．The complex $\left[\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{K}\right]^{+}$reacts with 2－propynyl bromide to afford the carbocation $\left[\mathrm{H}-\mathrm{Br} \cdots \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right]^{+}(\Delta H=-69.1 \mathrm{kcal} / \mathrm{mol})$ ． Phenyl 2－propynyl sulfide（VII）is formed by reaction of PhS^{-}ion with $\left.\mathrm{H}-\mathrm{Br} \cdots \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right]^{+}(\Delta H=$ $-181.1 \mathrm{kcal} / \mathrm{mol}$ ）．Deprotonation of alkyne VII yields $[\mathrm{PhSCHC} \equiv \mathrm{CH}]^{-}(\Delta H=-71.5 \mathrm{kcal} / \mathrm{mol})$（see figure， $b)$ ．In the initial state，the distance between the oxygen

Scheme 2.

atom of the hydroxy group and hydrogen atom on C^{3} is $3.5 \AA$ (see figure, a). This process is energetically more favorable than abstraction of the terminal proton from the acetylenic moiety ($\Delta H=-40.9 \mathrm{kcal} / \mathrm{mol}$). The subsequent proton transfer from the complex $\left[\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{K}\right]^{+}$to the terminal carbon atom (C^{1}, see figure, c; the distance bentween the C^{1} atom and the corresponding proton in the complex is $2.76 \AA$) is characterized by a ΔH value of $-249.2 \mathrm{kcal} / \mathrm{mol}$, and it leads to formation of allenyl phenyl sulfide (VIII) (see figure, d). Allene VIII then reacts with OH^{-}, yielding $\left[\mathrm{PhSC}=\mathrm{C}=\mathrm{CH}_{2}\right]^{-}(\Delta H=-74.4 \mathrm{kcal} / \mathrm{mol})$. Proton transfer to the terminal carbon atom C^{1} gives

Table 4. Calculated charges on the X and $C^{1}-\mathrm{C}^{3}$ atoms in 2-propynyl derivatives of benzenethiol, phenol, and N-methylaniline (compounds VII, X, and XI)

		Charge, a.u.			
Comp. no.	X				
		X	C^{1}	C^{2}	C^{3}
$\mathbf{Y I I}$	S	0.237	-0.182	-0.182	-0.184
\mathbf{X}	O	-0.204	-0.172	-0.210	0.087
$\mathbf{X I}$	NCH_{3}	-0.234	-0.198	-0.207	0.048

phenyl 1-propynyl sulfide (IX) ($\Delta H=-253.6 \mathrm{kcal} \times$ $\left.\mathrm{mol}^{-1}\right)$. A similar reaction heat $(-242.9 \mathrm{kcal} / \mathrm{mol})$ is typical of protonation of the C^{3} atom in the carbanion $\left[\mathrm{PhSC}=\mathrm{C}=\mathrm{CH}_{2}\right]^{-}$, which leads to allene VIII. The rearrangement of phenyl 2-propynyl sulfide (VII) gave a mixture of allenyl phenyl sulfide (VIII, 60\%) and phenyl 1-propynyl sulfide (IX, 40\%).

The above rearrangement does not occur with phenyl 2-propynyl ether (\mathbf{X}) and N-methyl- N-(2-propynyl)aniline (XI). This may be explained in terms of different electronegativities of the nitrogen, oxygen, and sulfur atoms. Table 4 contains the calculated charges on the $\mathrm{N}, \mathrm{O}, \mathrm{S}$, and C^{3} atoms in compounds VII, X, and XI.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian 200 Mercury spectrometer (200 and 50 MHz , respectively) using CDCl_{3} as solvent and hexamethyldisiloxane as internal reference. The mass spectra (70 eV) were run on an HP $6890 \mathrm{GC}-\mathrm{MS}$ system. GLC analysis was performed on a Chrom- 5 chromatograph equipped with a flame-ionization detector (glass column, $1.2 \mathrm{~m} \times 3 \mathrm{~mm}$, packed with 5% of OV-101 on Chromosorb W-HP, 80-100 mesh; carrier gas nitrogen, flow rate $60 \mathrm{ml} / \mathrm{min}$; oven temperature was varied from 180 to $250^{\circ} \mathrm{C}$, depending on the composition of the reaction mixture). Thiols, phenol, and 18-crown-6 were commercial reagents (from Acros) and were used without additional purification.

AM1 simulation of the rearrangement of phenyl 2-propynyl sulfide into allenyl phenyl sulfide; the distances are given in \AA; for better clearness, the potassium-oxygen distance in the structures of KOH and $\left[\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{K}\right]^{+}$is elongated relative to the calculated value.

2-Propynyl bromide and N -methylaniline were distilled prior to use.

Reaction of thiols, phenol, and N-methylaniline with 2-propynyl bromide. 2-Propynyl bromide, 1.33 ml (15 mmol), was added to a suspension of 10 mmol of substrate I-VI, 0.264 g (1 mmol) of 18 -crown- 6 , and 20 mmol of powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ or KOH in 20 ml of toluene. The mixture was stirred for $0.25-24 \mathrm{~h}$ at room temperature, filtered through a layer of silica gel, and evaporated to isolate compounds VII-IX and XI. Product \mathbf{X} was purified by vacuum distillation, bp $84-86^{\circ} \mathrm{C}(10 \mathrm{~mm})$. Compounds XII-XIV were purified by column chromatography using toluene-hexane mixtures (at various ratios) as eluent. The reaction conditions and spectral parameters of alkynes VII-XIV are collected in Tables 1-3.

Quantum-chemical calculations. Semiempirical quantum-chemical calculations were performed with the use of MOPAC 6 software (AM1 Hamiltonian) [11, 12]. The equilibrium geometric parameters were determined by full optimization using PRECISE keyword. Insofar as MOPAC 6 lacks parametrization for potassium atom, a "sparkle" pseudospecies was used instead. Supporting information (Cartesian coordinates of all initial and optimized structures) is available from the author (Dr. chem. M. Fleisher misha@osi.lv).

REFERENCES

1. Jacobs, T.L., Org. React., 1949, vol. 5, p. 13.
2. Jacobs, T.L., Akawie, R., and Cooper, R.G., J. Am. Chem. Soc., 1951, vol. 73, p. 1273.
3. Wojtkowiak, B. and Romanet, R., Bull. Soc. Chim. Fr., 1962, p. 805.
4. De Medeiros, E.F., Herbert, J.M., and Taylor, R.J.K., Tetrahedron Lett., 1990, vol. 31, p. 5843.
5. Filippova, A.Kh., Frolov, Yu.L., Lyashenko, G.S., Modonov, V.B., Ivanova, N.A., Kalikhman, I.D., Voronkov, M.G., and Vyazankin, N.S., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, p. 1847.
6. Magee, T.V., Stork G., and Fludzinski, P., Tetrahedron Lett., 1995, vol. 36, p. 7607.
7. Klein, J. and Becker, J.Y., Tetrahedron, 1972, vol. 28, p. 5385.
8. Ogawa, A., Sakagami, K., Shima, A., Suzuki, H., Komiya, S., Katano, Y., and Mitsunobu, O., Tetrahedron Lett., 2002, vol. 43, p. 6387.
9. Florio, S., Granito, C., Ingrosso, G., and Troisi, L., Eur. J. Org. Chem., 2002, vol. 20, p. 3465.
10. Kobychev, V.B., Vitkovskaya, N.M., Klyba, N.S., and Trofimov, B.A., Izv. Ross. Akad. Nauk, Ser. Khim., 2002, p. 713.
11. Ficini, J. and Barbara, C., Bull. Soc. Chim. Fr., 1965, p. 2787.
12. Ewing, D.F., Org. Magn. Reson., 1979, vol. 12, p. 499.
13. Kalinowski, H.-O., Berger, S., and Braun, S., 13C-NMR Spektroskopie, Stuttgart: Georg Thieme, 1984, p. 133.
14. Stewart, J.J.P., MOPAC, version 6.0. Quantum Chemical Program Exchange (QCPE), Program Number 455, Bloomington, IN, 1984.
15. Stewart, J.J.P., MOPAC, version 6.0. Manual. Program Number 455, Bloomington, IN, 1984.
